Near infrared reflectance (NIR) spectroscopy: dialing stem chemistry for optimal root disease resistance and forest products - CAFS Project Update

> Brian K. Via Lori Eckhardt

Rational & Problem Identification Forest Products Forest Health

- Important for us to know the chemical composition which relates to stiffness for these genetically superior families.
- Important to pick families that have a combination of good forest product and tree health characteristics.

- Pine Decline/Disease has been on the rise.
- There is a need to rapidly screen trees for disease resistance
- There is a need to identify genetic families with superior disease resistance.

Key Objectives for CAFS (Year 1)

- Develop NIR calibrations for wood chemistry of loblolly pine (*Pinus taeda*).
- Take these NIR calibrations and screen 14 genetic families from 2 sites for differences in:

Lignin, Cellulose, Hemicellulose, Extractives

- Relate wood chemistry to disease resistance and small clear wood stiffness.
- Pick families forecasted to have good disease resistance and small clear wood stiffness.
 - Validate the "forecast" works!

Timeline and Expected Deliverables for Short and Long term

Expected Deliverables for Year 1 (2014)

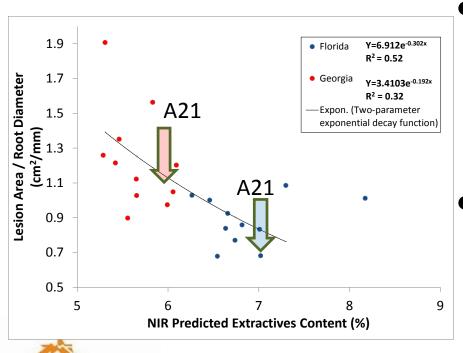
Finish development of NIR models for wood chemistry: extractives, lignin, cellulose, hemicellulose.

Expected Deliverables for Year 2 (2015)

Determine and validate relationships between wood chemistry and disease.

Expected Deliverables for Year 3 (2015-2016)

Perform more detailed examination of wood chemistry to determine underlying mechanism causing disease. Choose families with superior health with acceptable stiffness.



Key Hypothesis

- An increase in low molecular weight phenolics (present in extractives) will result in better disease resistance of genetic families.
- By breeding trees for better disease resistance through increased extractives production, we may be inadvertently decreasing wood stiffness.

Recent IGP Auburn University Funding: Update on Dialing Chemistry for Disease Tolerance

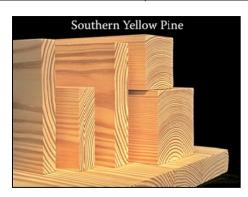
- Money was obtained from Auburn grant for intensive sampling.
- Need to obtain more data regarding extractives to lesion morphology.

Why Measure Fiber to Product Performance?

What happens if you:	Paper Burst	Paper Tensile	Paper Tear	Cardboard Compression	Clear Lumber MOE	Pulp Yield	Lumber Longitudinal Shrinkage
Decrease fibril angle from 40 to 30 degrees	?	1 2.5%	↑	↑3%	↑100%	No effect	↓ 66%
Increase cell length by 10%	↓ 10%	↓ 6%	↑15%	↓ 3%	↑	No effect	No effect
Increase cell wall thickness by 10%	↓ 6%	↓	↑15%	↓ 19%	↑	↑ 1%	No effect
Increase % latewood by 10%	↓ 3%	↓	↑ 7%	↓	↑	↑1%	No effect
Decrease lignin by 1 percentage point	to small	No effect to small reduction	↓ 4-10%	\	\	↑1-1.5 percentage point	Small improvement
Increase cellulose by 1 percentage point	No effect	No effect	↑7.5 %	No effect	↑10%	↑0.5 percentage point	No effect

What about Fiber to Bioenergy Performance?

Family	Mean NIR Chemistry (%) and Crystalline Index (%)					HHV (Btu/lb)		Youngs modulus (GPa)
	Crystallinity							
	Lignin	Cellulose	Hemicellulose	Extractives	Index	Demirbas Model	White Model	Rong et al. Model
Low Lignin	26.6	51.5	27.2	4.2	58.5	8256	8503	11.3
Medium Lignin	27.2	49.4	25.3	4.0	61	8299	8570	12.7
High Lignin	28.3	50.4	27.4	2.4	62	8342	8611	14



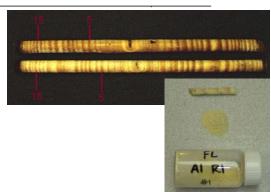
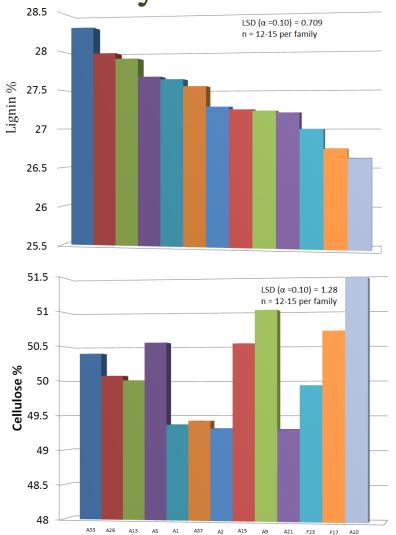

Near Infrared Spectroscopy: Characterization of Southern Pine Chemistry

Table 1 Results of NIR models before and after wavenumber selection

		Bef	ore wavenur	mber	Aft	After wavenumber		
Chemistry	Pretreatment	selection				selection		
		r^2	RMSEP	RPD	r^2	RMSEP	RPD	
Extractives	FD	0.96	0.62	1.19	0.91	0.37	2.00	
Lignin	FD	0.90	0.53	1.98	0.99	0.19	5.53	
Holocellulose	FD+MSC	0.95	0.85	2.08	0.96	0.27	6.56	
Cellulose	FD	0.96	1.34	1.13	0.95	0.68	2.22	
Hemicellulose	FD+MSC	0.90	1.12	1.40	0.82	1.05	1.50	



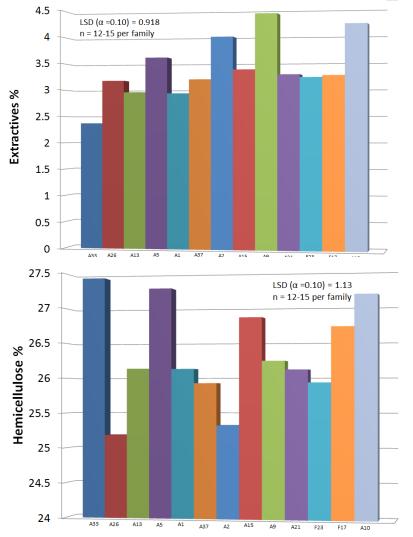
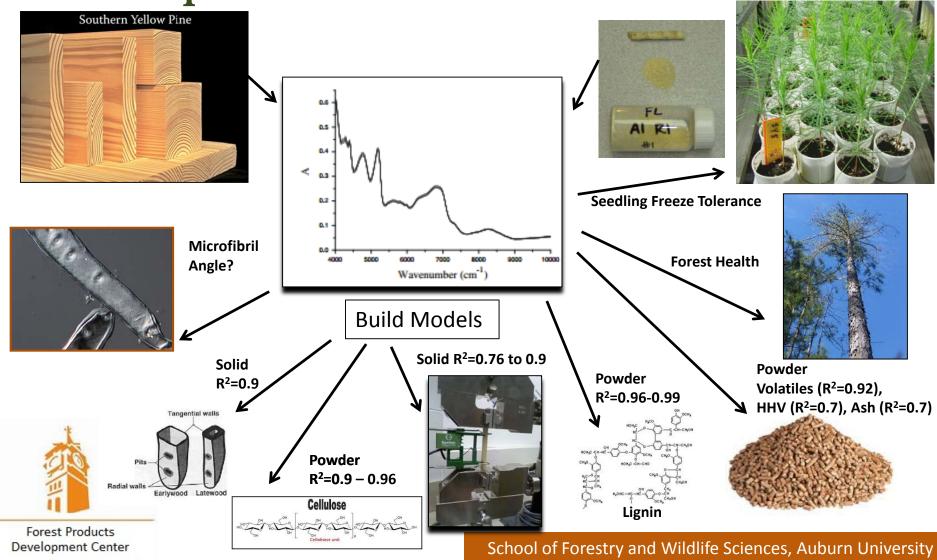
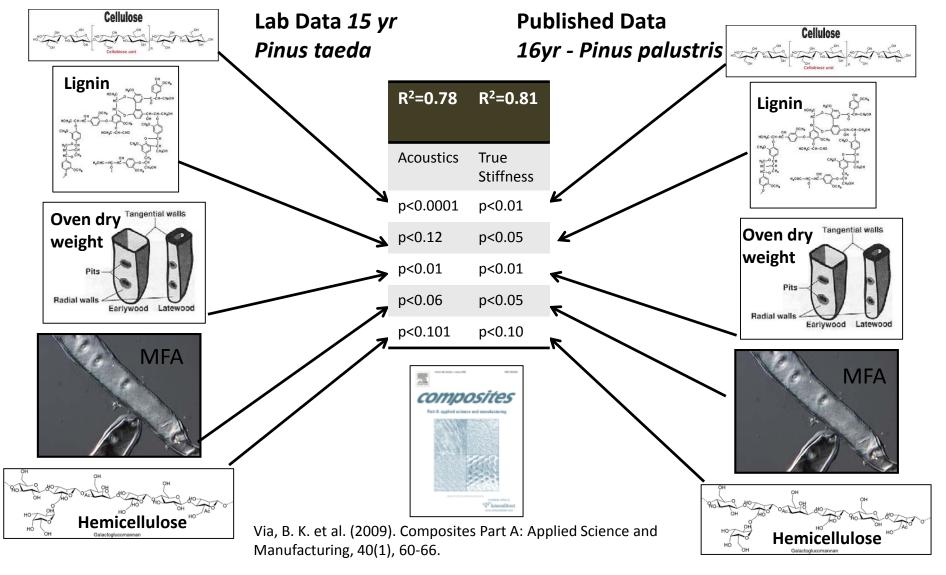

Near Infrared Spectroscopy: Characterization of Wood, Bark, & Needle Chemistry

Table: PLS1 model statistics for the chemical properties of forest biomass using raw spectra

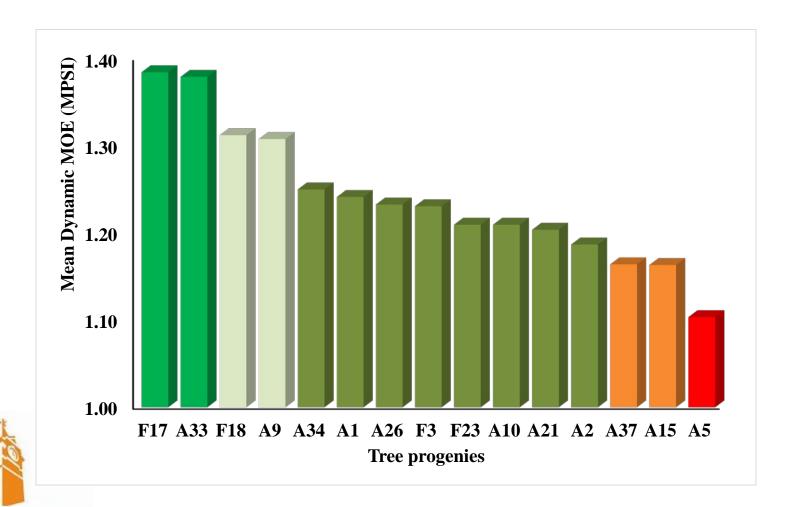

Property	Pretreatment	SEC	Bias	PCs	SECV	R^2
Extractives	1 st derivative	0.99	0.03	2	1.23	0.92
Lignin	Raw	1.55	0.07	4	1.75	0.87
Glucose	1 st derivative	3.30	-0.12	2	3.95	0.82
Mannose	1 st derivative	0.63	-0.10	3	1.60	0.84
Galactose	1 st derivative	0.97	0.00	3	2.05	0.71
Arabinose	1st derivative	0.36	0.00	2	0.42	0.77
Xylose	1st derivative	0.73	0.05	3	1.23	0.71
Cellulose	1 st derivative	3.40	-0.14	2	4.09	0.80
Hemicelluloses	1 st derivative	1.78	0.00	3	3.40	0.68
Holocellulose	1st derivative	3.73	-0.15	2	4.44	0.75

Near Infrared Spectroscopy: Characterization Loblolly Pine Families for Forest Health Coop.

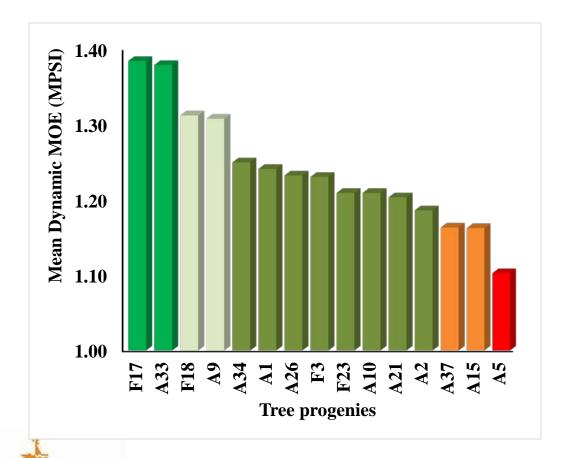
Near Infrared Spectroscopy: Predicting Multiple Traits from One Measurement



Additional Deliverables not Promised to CAFS or Coop



- Acoustic measurement of 15 families.
- Answer the Question:
 Can Acoustics really
 measure true MOE?


Acoustics: Is it sensitive to the same underlying mechanisms as true wood stiffness?

Acoustic Stiffness Estimate of 15 genetic families from Rayonier Site

Projected Samples Necessary to See Statistical Differences?

Difference	Sample
(MOE) psi	Size Per
(95%	Family
confidence)	
0.05	314
0.1	79
0.15	35
0.2	20
0.25	13
0.3	9
0.35	6
0.4	5
0.45	4
0.5	3

Note: Actual statistical difference (LSD) was 0.25 at 90% confidence for this study

Maximizing Stiffness & Extractives/Disease Tolerance

Rayonier, Yulee, FL						
		Acoustic				
Lignin	Extractives	Stiffness				
28.4	6.6	1.24				
29.2	6.5	1.19				
29.1	6.3	1.10				
28.7	6.5	1.31				
28.8	6.7	1.21				
28.9	6.5	1.16				
28.1	7.0	1.20				
29.1	6.5	1.23				
28.9	6.9	1.38				
28.3	6.7	1.25				
29.3	7.3	1.16				
29.2	8.2	1.38				
28.8	6.8	1.21				
	Lignin 28.4 29.2 29.1 28.7 28.8 28.9 28.1 29.1 28.9 28.3 29.3 29.2	Lignin Extractives 28.4 6.6 29.2 6.5 29.1 6.3 28.7 6.5 28.8 6.7 28.9 6.5 28.1 7.0 29.1 6.5 28.9 6.9 28.3 6.7 29.3 7.3 29.2 8.2				

Acknowledgements

IGP "Good To Great Grant"
Regions Bank
Forest Products Development Center
Forest Health Coop
Rayonier and Plum Creek

